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Abstract  In Operations Research, many exact and heuristic algorithms have been developed to 
solve location-allocation problems.  However, research on transportation-location problems has been 
limited to the application of only a few exact solution and heuristic algorithms to small size 
problems, because the computational effort required grows exponentially with the number of sources 
and destinations.  Here, a small problem is considered to be one that can be solved by an exact 
solution algorithm. The proposed method gives good results for both small and large test problems. 
This paper describes a hybrid technique, where the Simulated Annealing portion minimizes the total 
transportation cost by modifying the source locations.  Then, for each location proposed by the 
Simulated Annealing algorithm, the optimal allocations from each source to each destination are 
found by solving a linear Transportation problem using traditional Linear Programming techniques. 
The proposed algorithm was compared to exact solution methods for set of small test problems 
(using 2 to 4 sources and 4 to 8 destinations), where the exact solution methods could be applied.  
The algorithm was then tested on two large test problems (10 x 10, 12 X 16) that were constructed in 
such a way that the exact solution was known.  In all cases, the proposed algorithm converged to 
near-optimal solution.   
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INTRODUCTION 
 
   A transportation–location problem, is a generalized 
version of the Hitchcock transportation problem 
(Hadley, 1962), where, in addition to finding the 
amounts to be shipped from a certain number of origins 
to another number of destinations, it also finds, the 
optimal locations of these sources with respect to the 
fixed locations of the destinations.  Cooper (1972) 
formulated the transportation-location problem as a 
generalization of both the Hitchcock “Transportation 
problem” and the “Location-Allocation” problem with 
unlimited source capacities. 
 
   An exact algorithm for the Transportation-Location 
problem has been developed by Cooper (1972).  
Cooper’s exact algorithm was simply to generate all 
possible basic feasible solutions to the constraint set of 
the transportation problem, and then use an iterative 
procedure to find the optimal location for the given set 
of allocations.  Since, the computational effort required 
to find an exact solution increases exponentially with 
the size of the problem, the largest problem could be 
solved by his method was a 4 x 4 problem.  The number 
of basic solutions generated from 4 x 4 can be upto 
11440 and  minimum number of basic feasible solutions 

for a transportation–location problem is given as: n! / 
(n-m + 1)!, where n is the number of sources, and m is 
the number of destinations.  Therefore, although a 4 x 4 
problem has a minimum of 24 basic feasible solutions, 
but actual number basic feasible solutions generated by 
Cooper’s exact algorithm was 467.  A 10 x 10 problem 
has at least 3.6 x 106 basic feasible solutions, and a 15 x 
15 problem has at least 1.3 x 1012 basic feasible 
solutions. Here the definition of a “large” problem to be 
one that has more than 1.0 x 106 basic feasible 
solutions, which is surpassed by a 8 x 11 or a 9 x 10 
problem.  Anything with a larger number of either 
sources or destinations will be considered to be “large” 
for the purpose of this paper. 
 
   Cooper (1972) in his “Alternating Transportation-
Location Heuristic” generated a set of initial source 
locations, which yield a set of distances between the 
sources and destinations. He solved the problem by 
taking distances as cost coefficients and got optimal 
allocation from each source to each location. Every time 
he got a new set of source location and repeated until 
the amount come within some tolerance. Such iteration 
yields a convergent, monotone, non-increasing sequence 
of values for the objective function. Though it got no 
guarantee for converging to the global optimum for its 
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multi-modal but lies within 10 percent of the true 
optimum. Cooper’s (1964) location-allocation (require 
no capacity constraints on the source) algorithm 
provided moderately successful results but by no means 
the best of all other heuristics tested for pure location-
allocation problems. Cooper’s both transportation-
location and location-allocation problems were 
considered the definitive work until recently where 
modern algorithms like Simulated Annealing and the 
Genetic Algorithm emerged for solving large, possibly 
discrete global optimization problems.  
 
   Liu (1994) demonstrated use of Simulated Annealing 
with rectilinear distances to solve a location-allocation 
as an effective heuristic approach for solving large-scale 
problems.  
 
   Gonzalez-Monroy and Cordoba (2000) compared both 
the use of Simulated Annealing and the Genetic 
Algorithm for the optimization of energy supply 
systems. The results depicts that the Simulated 
Annealing is more efficient than the Genetic Algorithm 
as the size of the problem was increased.  
 
   This presented work is based upon Liu’s (1994) work 
on Simulated Annealing.  The transportation-location 
problem is one step more difficult than the location 
allocation problem taking source capacity as constraints. 
This work is also more difficult than that performed by 
Liu, since the use of Euclidean distances, rather than 
rectilinear distances, makes the objective function non-
linear.  In addition to solving a more difficult problem 
than has previously been attempted, an improved 
method for applying the Simulated Annealing algorithm 
to these types of problems is presented below.           
 

PROBLEM STATEMENT 
 

   Although the general transportation – location 
problem refers simply to “sources” and “destinations,” 
for practical purposes, we will solve a particular type of 
a transportation – location problem, namely, identifying 
the optimal location of new power plants to meet the 
new (or future) energy demands of a certain number of 
cities. The objective of this problem will be to minimize 
the total power distribution cost.  The power 
distribution cost is the sum of the products of the power 
supply cost (per unit amount, per unit distance), the 
distance between the plant and the city, and the amount 
of power supplied from the plant to the city, for all 
plants and all cities.   For each city, we will constrain 
the total amount of power supplied by all plants to be 
equal to the total demand of that city.  And for each 
plant, we will constrain the total amount of energy 
supplied by the plant to be less than or equal to the total 
capacity of the plant. 
 
   The mathematical form of the problem can be written 
as, 
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Where 
φ            =  transportation cost per unit amount per 

unit distance 
δij           = distance from source i to destination j 
vij           =  amount supplied from source i to 

destination j 
n            =     number of plants  
m           =     number of cities 
xi , yi       =  X & Y coordinates of the source i 
xj , yj       =  X & Y coordinates of the destination j 
dj =    demand of the destination 
ci  =    source capacity 
 
Notice that the Euclidean distance term, δij, can be 
calculated using Eqn. 2 below. 
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METHOD 

 
  The Transportation-location problem for locating 
power plants and allocating power to cities is divided 
into two levels.  The functions of each level are 
described below: 

Level 1 
At Level 1, the Simulated Annealing algorithm is used 
to minimize the cost function given in Eqn. 1 above, by 
adjusting the X and Y locations of each plant.  The 
constraints given in Eqn. 1 are ignored at Level 1, and 
imposed at Level 2, as will be shown below.  At Level 
1, the algorithm proceeds as follows:  
 
1. The user enters the locations and demands for each 

city; the desired starting and ending values for the 
Boltzman Probability; and the number of Simulated 
Annealing cycles.  These values are used to 
compute a starting temperature and a temperature 
reduction factor for the Simulated Annealing 
algorithm. 
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2. The X and Y locations of all of the plants are 
randomly perturbed a small amount from the 
previous set of values.  The objective function is 
calculated again by calling the Level 2 subroutine. 

 
3. Random locations for the plants are assigned.  The 

objective function (Eqn. 1) is evaluated by calling 
the Level 2 subroutine, which optimally allocates 
power from the plants to the demand points, and 
insures that the constraints are satisfied. 

 
4. If the new objective value is lower, the new 

locations are accepted.  Otherwise the Boltzman 
Probability is calculated, and a random number 
between 0 and 1 is generated.  If the random 
number is less than the Boltzman Probability, the 
new locations are accepted; otherwise they are 
discarded. Steps 3-4 are repeated until the desired 
numbers of perturbations per temperature have 
been performed. 

 
5. The Simulated Annealing temperature is lowered 

using the temperature reduction factor, which 
results in a reduction in the Boltzman Probability. 

 
6. Steps 3 - 5 are repeated until the desired number of 

cycles have been performed. 
 
7. The final cost, the final X and Y locations of the 

plants, and the corresponding allocations of power 
from each plant to each city, are reported to the 
user. 

Level 2 
The level 2 optimization receives the locations of all the 
plants from Level 1, and solves a linear Transportation 
type problem using the Simplex algorithm.  The 
objective and constraints are exactly as shown in Eqn. 1 
above.  However, since the location of both plants and 
cities are known at this point, the non-linear distance 
parameter (Eqn. 2) now becomes a constant, which 
reduces the problem to a simple location problem, in 
which the allocations of power from the plants to the 
cities are adjusted to minimize cost.  The optimal cost 
value, and the optimal allocations from plant i to city j, 
vij, are passed back up to Level 1. 
 
   For all the sample problems below, the Simulated 
Annealing algorithm was applied as described above, 
and a result was obtained.  The optimal locations for 
this first Simulated Annealing run was then used as the 
starting value for a another Simulated Annealing run 
using a smaller step size.  A more sophisticated 
algorithm could automatically reduce the step size as 
the temperature is reduced. 
 

RESULTS 
 

   The method described above was applied to the 
sample problems given in Cooper (1972), and the 

results were compared to the exact solutions reported by 
Cooper.  These results are shown in Table 1.0 below.  
Since the method described in this paper involves 
random perturbations, all the small sample problems 
were solved 10 times each, and the average result is 
reported below.   
 

Table 1.0 : Results for Sample Problems Presented 
in Leon Cooper's Paper 

Problem  
Numbers 

Size 
Source 

x 
Dest. 

Exact 
Solution 

SA 
Solution 

% 
Difference 

1 2 x 4 54.142 54.145 0.0045 
2 2 x 7 50.450 50.450 0.0000 
3 2 x 7 72.000 72.010 0.0144 
4 2 x 7 38.323 38.323 0.0000 
5 2 x 7 48.850 48.850 0.0000 
6 2 x 7 38.033 38.037 0.0116 
7 2 x 7 44.565 44.565 0.0000 
8 2 x 7 59.716 59.717 0.0008 
9 2 x 7 62.204 62.209 0.0079 

 
A program was written to implement the Cooper’s exact 
solution method, and another series of small test 
problems was randomly generated and solved using 
both Cooper’s exact solution technique and the method 
described in this paper, as shown in Table 2.0 below. 
Finally, two large problems were carefully designed so 
that the optimal value was known in advance.  Our 
method was applied to these large problems, and the 
results were compared to the exact solution, as shown in 
Table 3.0 and Table 4.0 below. 

 
DISCUSSION OF RESULTS AND CONCLUSIONS 
 
   Results obtained from Tables 1.0 and 2.0, on small 
problems were very close to the exact solutions (within 
0.01 %).  However, since an exact solution method is 
available for small problems, the exact solution would 
be preferable in all cases where it is applicable. 
 

Table 2.0 : Results for 10 Randomly Generated 
 Problems 
 

Problem 
No. 

Source 
No. X 

Destinat
ion No. 

Exact 
Solution 

SA 
Solution 

% 
Differen

ce 

1 2 x 4 54.1424 54.1431 0.00129 
2 2 x 5 65.7816 65.7854 0.00575 
3 2 x 6 68.2853 68.2867 0.00205 
4 2 x 7 44.1433 44.1433 0.00000 
5 2 x 8 93.6597 93.6639 0.00442 
6 3 x 3 40.0026 40.0033 0.00159 
7 3 x 4 40.0002 40.0009 0.00180 
8 3 x 5 60.0000 60.0067 0.01120 
9 3 x 6 54.1426 54.1426 0.00006 

10 4 x 4 10.0000 10.0008 0.00797 
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Table 3.0 : Result for 1 Large Problems with 
known Solutions 
 

Problem 
No. 

Source No. 
X 

Destination 
No. 

Exact 
Solution 

SA 
Solution 

% 
Diff. 

1 12 X 16 160.000 160.245 0.15  
 

Table 4.0 – Result for 1 Large Problems with 
known Solutions 
 

Problem 
No. 

Source No. 
X 

Destination 
No. 

Starting 
Value at 

(0,0) 
location 

Final 
Solution 

 

% 
Improv

ed 

1 10 X 10 5441.48 1.775 99.97 
% 

 
   The real benefit of this method comes for large 
problems, for which an exact solution is not generally 
known.  The result for the first large problem (12 x 16) 
in Table 3.0 showed an error of about 0.15 %. The 
problem converged to very nearly the exact solution, 
with all plants being located in the correct city.  The 
result for the 2nd large problem also converged very near 
to the exact solution of “Zero”.  Because of the zero 
value of the exact solution the percent difference could 
not be calculated instead a percent improved had been 
calculated.  The small errors were due to the fact that 
Simulated Annealing is not particularly effective at 
driving to the very lowest point of a local optimum. 
Still, these results illustrate the utility of the two-tiered 
hybrid Simulated Annealing and Linear Programming 
method for solving large Plant location problems. 
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